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In this paper, I will present an alternative approach to the Bethe or cactus lattice
approximation, widely employed in the theory of cooperative phenomena. This approach
relies on a variational free energy, which is equivalent to the Bethe free energy in that
it has the same stationary points, but allows one to simplify analytical calculations,
since it is a function of only single-site probability distributions, in the same way as an
ordinary mean-field (Bragg-Williams) free energy. As an application, I shall discuss a
derivation of closed-form equations for critical points in Ising-like models. Moreover,
I will suggest a rule of thumb to choose the cactus lattice connectivity yielding the best
approximation for the corresponding model defined on an ordinary lattice.
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1. INTRODUCTION

The Bethe (or first-order) approximation is a widely employed tool in the statis-
tical mechanics of lattice systems.(1,2) It improves the simple mean-field (zeroth-
order) approximation by taking into account local correlations between pairs of
nearest-neighbor sites, or among sites in suitable clusters. At the pairwise level,
it was first proposed by Bethe in 1935, in a self-consistent formulation.(3) Almost
contemporarily, Guggenheim(4) gave it a variational formulation, denoted as quasi-
chemical approximation, which can be easily generalized to larger clusters.(5) In
the 60s, it was suggested that the Bethe approximation provided the exact solution
for models defined on Cayley trees(2) (i.e., infinite trees whose leaves are pairs of
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sites), but, in 1974, Eggarter showed that actually the partition function of the sim-
ple Ising model on the Cayley tree is analytic at all temperatures, basically due to
the fact that the majority of the system is made up of boundary sites.(6) The Bethe
approximation, and the phase transition it predicts for the Ising model, turn out to
describe correctly only the behavior of the interior part of the Cayley tree, denoted
as Bethe lattice. Such a behavior can be determined by computing the limit of a
suitable recursion equation. It is possible to show that even this weaker statement
requires some care, in particular when the limit of the recursion equation does not
exist, or in the presence of multiple fixed points, i.e., coexistence phenomena.(7)

In the generalized version, sometimes denoted as cactus approximation,(8)

the Cayley tree is replaced by a cactus or Husimi tree, whose leaves are clusters
of sites, and the result still describes just the behavior of the interior part of the
tree, denoted as cactus or Husimi lattice. In the following, I shall employ the terms
cactus lattice to denote both Bethe and Husimi lattices, and cactus approximation
to denote the corresponding approximation schemes. These techniques often pro-
vide reliable results for models defined on ordinary lattices, and have been used to
investigate a large variety of physical systems: Ising-like models,(9,10) Potts mod-
els,(11) complex fluid models,(12−13) spin liquids,(15) polymers,(16−20) sandpiles.(21)

More recently, the approximation has also been generalized to treat systems with
quenched disorder, such as spin glasses,(22) random heteropolymers,(23) random
combinatorial optimization problems,(24) random graphs.(25) In the context of this
generalization, usually denoted as the cavity method, it has also been argued(22)

that actually the cactus approximation should provide the exact solution for a reg-
ular random graph or hypergraph (i.e., a random graph or hypergraph with fixed
connectivity) in the thermodynamic limit. Therefore, the latter turns out to be the
most correct definition of a Bethe or Husimi lattice.

As already present in the original formulations by Bethe(3) and
Guggenheim,(5) respectively, the cactus approximation allows two different ap-
proaches: A recursive one, which exploits the local self-similarity of the cactus
lattice, and a variational one, based on a peculiar factorization of the probabil-
ity distribution of the system. The two approaches have been recently compared
and discussed in Ref. 7. The variational approach, in particular, turns out to be
equivalent to Kikuchi’s cluster variation method(26−28) with a special choice of
basic clusters,(8) and relies on a variational free energy functional, usually simply
denoted as Bethe free energy. The Bethe free energy often allows some degree of
analytical treatment, mainly in the case of homogeneous systems, or when it is
possible to exploit symmetries of the model. Nevertheless, some difficulties may
arise, due to the fact that one has to deal with cluster probability distributions,
and therefore with a quite large number of variational parameters.(12) In a previous
paper,(13) devoted to a lattice-fluid model of water, I have employed an alterna-
tive method, relying on a simpler variational free energy, which is a function of
only single-site probability distributions. In that case, the method allows one to
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derive simple equations to determine response functions and their divergence loci
(spinodals).(13)

In this paper, I shall first prove the equivalence of the alternative variational
free energy to the original Bethe free energy, since such proof was not reported
in the previous paper.(13) Moreover, I will give another example of application,
deriving closed-form equations for the criticality conditions of Ising-like spin
models. The latter calculation is based on a Landau expansion of the alternative
free energy. Incidentally, I will also discuss a criterion for choosing the cactus
lattice connectivity, in order to obtain the best approximation for a given ordinary
lattice. Different alternatives are possible in general, but one can observe that,
as the limit of infinite connectivity recovers the basic mean-field approximation,
low connectivity numbers improve the approximation. The paper is organized as
follows. In Sec. 2, I will introduce the cactus approximation in the variational
formulation, discussing both the usual approach, and how the alternative approach
can be derived. Moreover, I shall explain in which sense the two approaches can be
said to be equivalent. In Sec. 3, I will discuss the application to Ising-like models.
Sec. 4 is devoted to summary and conclusions.

2. THE CACTUS APPROXIMATION

First of all, let us define a cactus tree via a recursive growth procedure. Let us
consider a cluster of sites, for instance a square of 4 sites, as shown in Fig. 1(a), or
more generally a cluster of n sites. Let each site be characterized by a configuration
variable, which for simplicity is assumed to be a scalar. Let us also assume that
a cluster hamiltonian h defines the interactions among sites in the cluster. We
can build up a branch of the cactus tree in the following way. Let us define a
connectivity constant c, and attach c − 1 equivalent clusters to the i-th site of the
starting cluster, for i = 2, . . . , n. We thus obtain a “second generation” branch,
shown in Fig. 1(b), where c = 2. Subsequently, we can produce new generations
by iterating the procedure, as shown in Fig. 1(c). Finally, we attach c equivalent
branches to the base site. Such a system turns out to be self-similar in the infinite
generation limit.

Following Morita,(8) clusters used as building blocks are denoted as main
clusters, while intersections of main clusters are denoted as joint sites. The total
hamiltonian H can be written as a sum over all the main clusters

H (X ) =
∑

M

h(xM ), (1)

where xM denotes the set of site configuration variables in the main cluster M ,
and X denotes the configuration of the whole system. It is possible to show(7) that
the probability distribution of the total configuration P(X ) = Z−1e−β H (X ), where
Z = ∑

X e−β H (X ) is the partition function and β is the inverse temperature, can
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be factorized as follows:

P(X ) =
∏

M

{
pM (xM )

∏

J⊂M

[pJ (xJ )]−b

}
, (2)
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Fig. 1. Example of a square cactus tree obtained by a growth procedure: (a) first generation branch;
(b) second generation branch; (c) third generation branch. Numerals are meant to denote that the
dihedral symmetry of square clusters may be broken.
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Fig. 1. Continued

where pM (xM ) and pJ (xJ ) denote respectively the marginal probability distribu-
tions for the configurations xM (of the main cluster M) and xJ (of the joint site J ),
and b ≡ 1 − 1/c. The outer product runs over all main clusters M , whereas the
inner one runs over all joint sites J in the main cluster M .

We can now write the total free energy F as a function of the probability
distributions of only main clusters and joint sites. If 〈·〉 denotes an ensemble
average, we have

βF = 〈βH (X ) + log P(X )〉

=
∑

M

∑

xM

pM (xM )

[
βh(xM ) + log pM (xM ) − b

∑

J⊂M

log pJ (xJ )

]
. (3)
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Let us notice that this expression coincides with that obtained by the cluster varia-
tion method, when the main clusters are chosen as maximal clusters of the cumu-
lant expansion.(28) The marginal probability distributions pM (xM ) and pJ (xJ ) can
be assumed as variational parameters, and the exact thermodynamic equilibrium
state can in principle be determined by minimizing the free energy in Eq. (3), with
suitable normalization and compatibility constraints. By compatibility, I mean
that joint-site probability distributions pJ (xJ ) must be marginal distributions of
main-cluster distributions pM (xM ), i.e.,

pJ (xJ ) =
∑

xM\J

pM (xM ), (4)

for all M ⊃ J , where xM\J denotes the configuration of the main cluster M without
the joint site J .

Let us notice that this approach would be intractable if one is interested
in the properties of the infinite cactus tree, since one would then have to deal
with an infinite number of variational parameters and constraints. Nevertheless,
the formalism is useful to derive the Bethe free energy (3). It is reasonable that
Eq. (3), which is exact for a cactus tree, also tends to be exact for a system which
has locally the structure of a cactus tree, but in which every site has the same
connectivity, i.e., there is no boundary. As mentioned in the introduction, such a
system may be identified with a regular random graph, which is locally tree-like,
in the sense that the length of loops diverges as the logarithm of the number
of sites (in the thermodynamic limit).(22) For such a system, if the main-cluster
hamiltonian h does not depend on M , one can expect that also the thermodynamic
state satisfies a “translational” invariance condition, i.e.,

pM (x) ≡ p(x) (5)

for all main clusters M . With this condition, one obtains a simpler form of the
free energy, which may be quite a good approximation for a corresponding system
defined on an ordinary lattice, and is the one which can be denoted as cactus
approximation. In the following, as in Eq. (5), x ≡ {x1, . . . , xn} will denote the
total configuration of a generic main cluster, whereas xi , for i = 1, . . . , n, will
denote joint-site configurations. If Eq. (5) holds, we shall have to consider only n
(in principle) different “types” of joint sites, i.e., n different joint-site probability
distributions pi (xi ).

2.1. Usual Approach

Taking into account the homogeneity condition (5), one can study the free-
energy density f (per main cluster) and perform only a minimization of f. From
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Eq. (3), one can write

β f =
∑

x

p(x)

[
βh(x) + log p(x) − b

n∑

i=1

log pi (xi )

]
, (6)

where the joint-site distributions pi (xi ) depend on the main-cluster distribu-
tion p(x) via the marginalization relation

pi (xi ) ≡
∑

x\i

p(x). (7)

In this equation, x\i ≡ {x1, . . . , xi−1, xi+1, . . . , xn} denotes the configuration of
a main cluster without the i-th joint site, and the sum runs over all possible
such configurations. Thus, the free-energy density turns out to be a functional
of only the main-cluster distribution p(x). One can work out a minimization of
this functional, using the Lagrange multiplier method to impose normalization of
p(x). Accordingly, we define the extended functional

β fλ ≡ β f − λ

[
∑

x

p(x) − 1

]
, (8)

where λ is the unknown Lagrange multiplier. Taking the derivatives of fλ with
respect to p(x) and setting them at zero, one obtains

p(x) = q−1e−βh(x)
n∏

i=1

[pi (xi )]
b , (9)

where q is related to λ in an irrelevant way. Taking the sum of both sides of Eq. (9)
over all the cluster configurations x , and imposing the normalization condition,
one obtains

q =
∑

x

e−βh(x)
n∏

i=1

[pi (xi )]
b . (10)

Equation (9), with q defined by Eq. (10), provides a fixed point equation for p(x),
which is usually solved via an iterative procedure, known as natural iteration
method.(27) Different solutions may be found, starting the procedure from different
trial p(x), and the stable phase is determined as the solution with the lowest free-
energy density f. The latter can be evaluated by taking the logarithm of both sides
of Eq. (9), and plugging the result into Eq. (6), yielding

β f = − log q, (11)

where q has to be computed at each iteration. From the numerical point of view, it
is noticeable that the natural iteration method lowers the free-energy value at each
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iteration,(7,27) so that it does generally converge to minima of the free energy, and
not to maxima or saddle points.

2.2. Alternative Approach

Let us now have a look at Eq. (11). Its form suggests that, instead of min-
imizing f with respect to the main-cluster distribution p(x), one could obtain
equivalent equilibrium conditions also by maximizing the functional q, defined
by Eq. (10), with respect to the joint-site distributions pi (xi ). This fact is not ob-
vious, since Eq. (11) holds only at stationary points of f , being derived by taking
into account Eq. (9). Hereafter, I will show that the pi (xi ) obtained as stationary
points of q (which I shall denote as cluster partition function) coincide with the
marginals of the p(x) which stationarizes f. In this sense, −β−1 ln q, turns out to
be a variational free energy equivalent to f.

Let us study the stationary points of the cluster partition function q. We have
to take into account the normalization constraint for the joint-site distributions

∑

xi

pi (xi ) = 1 (12)

for i = 1, . . . , n. Therefore, we define the extended functional

qλ1,...,λn ≡ q −
n∑

i=1

λi

[
∑

xi

pi (xi ) − 1

]
, (13)

compute its derivatives with respect to pi (xi ), and set them at zero. By simple
algebra, we obtain the simultaneous equations

pi (xi ) = bλ−1
i

∑

x\i

e−βh(x)
n∏

j=1

[p j (x j )]
b. (14)

After the Lagrange multipliers λi have been determined by imposing the normal-
ization constraints (12), Eq. (14) turns out to be equivalent to Eq. (9) marginalized
to site distributions, as we aimed to prove. As mentioned in the introduction, the
advantage of this alternative approach is that the variational parameters of the clus-
ter partition function are only site distributions, whereas the cluster distribution
has never to be considered explicitly.

3. EXAMPLES OF APPLICATION: SPIN MODELS

In this section I will present a particular application of the above described
approach, showing how it can be exploited to determine closed-form criticality
conditions for Ising-like models. Let us first rewrite the cluster partition function,
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assuming that the configuration variables are Ising spins:

q =
∑

s1=±1

. . .
∑

sn=±1

e−βh(s1,...,sn )
n∏

i=1

[pi (si )]
b . (15)

Defining magnetizations as thermal averages of spin variables

mi ≡ 〈si 〉 = pi (+) − pi (−), (16)

we can use them to parametrize joint-site distributions as

pi (si ) = 1 + si mi

2
, (17)

for si = ±1. In this way, the maximization of q can be carried out with respect to
the magnetizations mi , with no constraint, except that −1 ≤ mi ≤ 1. To simplify
the notation, let us also define the linear functional

W{ξ} ≡
∑

s1=±1

. . .
∑

sn=±1

e−βh(s1,...,sn )ξ (s1, . . . , sn), (18)

where ξ ≡ ξ (s1, . . . , sn) denotes any function of joint-site spins in a main cluster.
From Eqs. (15) and (17), we can then write

q = 1

2nb
W

{
n∏

i=1

(1 + si mi )
b

}
. (19)

Being interested in critical conditions, we work out a Landau expansion of Eq. (19)
in the hypothesis mi → 0. From the binomial expansion

(1 + si mi )
b = 1 + bsi mi +

(
b

2

)
m2

i + o
(
m2

i

)
, (20)

where we have taken into account that s2
i = 1, we can easily derive

n∏

i=1

(1 + si mi )
b = 1 +

n∑

i=1

[
bsi mi +

(
b

2

)
m2

i + b2
n∑

j=i+i

si s j mi m j

]

+o(mi m j ), (21)

where of course o(mi m j ) denotes an infinitesimal of higher order than any product
mi m j . Substituting into Eq. (19) and taking into account the linearity of W , we
obtain the desired Landau expansion

q = q◦ + 1

2

n∑

i=1

n∑

j=1

q ′′
i j mi m j + o(mi m j ), (22)
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where the elements of the hessian matrix turn out to be

q ′′
i i = −b(1 − b)

2nb
W{1}, (23)

q ′′
i j = b2

2nb
W{si s j } for i �= j, (24)

and

q◦ = 1

2nb
W{1}. (25)

Note that the first-order terms disappear, in the hypothesis that the cluster hamil-
tonian is invariant under spin inversion, i.e.,

h(−s1, . . . ,−sn) = h(s1, . . . , sn). (26)

This implies W{ξ} = 0, if ξ changes sign under spin inversion, as is the case for
a single spin. Once the model (i.e., the main-cluster hamiltonian h) is defined, it is
easy to determine W{1} and W{si s j } (i.e., the hessian matrix elements q ′′

i j ), as a
function of the model parameters. Subsequently, one can determine the eigenvalues
and eigenvectors of the hessian matrix, for example with the help of a symbolic
manipulator like Mathematica. The equations, obtained by setting each eigenvalue
at zero, define the criticality conditions, while the correspondent eigenvectors
determine the types of symmetry breaking.

3.1. Example I: Ising Model

As a first test model, let us consider the simple Ising model on the square
lattice. In order to work out the cactus approximation, let us also consider a cactus
lattice, whose building blocks are square plaquettes of 4 sites. In principle, c = 2
or c = 4 are both reasonable choices for the connectivity. In the former case, there
is no overcounting of the energy, whereas, in the latter case, pair interactions turn
out to be doubly-counted, so that, in general, the main-cluster hamiltonian can be
written as

h(s1, s2, s3, s4) = −2

c
J (s1s2 + s2s3 + s3s4 + s4s1) . (27)

We can now perform the previously described calculation, and determine the
(4 × 4) hessian matrix of the cluster partition function. As mentioned above, the
matrix can be diagonalized symbolically by Mathematica, and its eigenvectors
turn out to be

v1 = (+1, 0,−1, 0)

v2 = (0,+1, 0,−1) (28)

v3 = (+1,−1,+1,−1)

v4 = (+1,+1,+1,+1),
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while the corresponding eigenvalues are

λ1 = −16 + 4c − 2c e8β J/c − 2ce−8β J/c

λ2 = λ1 (29)

λ3 = −8 − 4c − 2c e8β J/c + (6c − 8)e−8β J/c

λ4 = −8 − 4c + (6c − 8)e8β J/c − 2c e−8β J/c.

It is easy to see that λ1 = λ2 never change sign, so that the corresponding eigen-
vectors v1, v2 do not correspond to any real symmetry breaking. Conversely, by
solving the equations λ3 = 0 and λ4 = 0, we obtain

e±8β J/c = 1 − 2

c
+ 2

(√
1 + 1

c2
− 1

)
(30)

(+,− signs descend respectively from λ3 = 0, λ4 = 0), which determine two
different critical values of β J of equal magnitude and opposite sign. The v3 and
v4 eigenvectors indicate that the symmetry breakings are respectively of antiferro-
or ferro-magnetic type. Of course, since J = −|J | and J = |J | respectively for
the two cases, the critical temperature turns out to be the same.

In Fig. 2, I report the scaled critical temperature 1/4βc|J | for c = 2 and
c = 4, together with the exact value for the Ising model on the ordinary square

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

exact

CVM - square

Bethe

c = 2

c = 4

1/c

1/
4β

c|J
|

Fig. 2. Scaled critical temperature 1/4βc|J | for the Ising model in the square cactus approximation
for c = 2 and c = 4 (circles) and its analytical continuation, as a function of 1/c (dotted line). Thin
lines denote the exact critical temperature of the Ising model on the square lattice, and the approximate
temperatures obtained by the ordinary Bethe lattice approximation and by the square approximation
of the cluster variation method.
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lattice(1,29)

2βc|J | = sinh−1 1 (31)

and the values obtained by the cluster variation method in the square approxima-
tion(30) (equivalent to the Kramers-Wannier approximation(31))

2βc|J | = ln
5 + √

17

4
(32)

and by the basic (pair) Bethe approximation(1)

2βc|J | = ln 2. (33)

One can observe that the square cactus approximation yields quite a poor result for
c = 4, whereas it slightly improves the Bethe approximation for c = 2, although
it is not so good as the cluster variation method (Kramers-Wannier) result. It is
also interesting to investigate the analytical continuation of the critical temperature
value, Eq. (30), for any value of c. The result is also reported in Fig. 2, as a function
of 1/c. In particular, let us consider what happens for large c. Equation (30) can
be expanded in powers of 1/c, yielding

1 ± 8β J

c
+ o

(
1

c

)
= 1 − 2

c
+ o

(
1

c

)
, (34)

so that, in the limit c → ∞, Eq. (34) leads to

∓4β J = 1, (35)

which is exactly the mean-field value.(1) This result could be expected, since,
according to Eq. (27), h(x) contains c in its denominator, so that, for c → ∞, the
stationary point Eq. (9) gives

p(x) =
n∏

i=1

pi (xi ), (36)

which actually coincides with the mean-field (Bragg-Williams) hypothesis.(1)

According to these results, I suggest that, as a rule of thumb, the connectivity
constant of the cactus lattice, used to work out the approximation of the ordinary
lattice model, is to be chosen as small as possible. High connectivity values
approach the mean-field approximation, whereas low connectivity values seem to
improve the approximation, and one can expect that such a behavior should be
quite general. Of course, one also expects that in general there will be a price
to pay, namely, that choosing smaller connectivities implies choosing larger main
clusters. For example, this is actually what happens in our case, while passing
from the basic Bethe approximation (c = 4, with a 2-site main cluster: n = 2) to
the more effective square cactus approximation (c = 2, with a 4-site main-cluster:
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n = 4). Let us notice that, for the simple Ising model, the improvement obtained
is just quantitatively relevant. Nevertheless, it may become even qualitatively
important, for models in which correlations between more than two sites play a
significant role, as is the case, for instance, in the previously cited lattice models
of water.(12−13)

3.2. Example II: Ising Model with 1st and 2nd Neighbor Interactions

Let us now consider another interesting example, namely, the Ising model
with nearest-neighbor (J ) and next-nearest-neighbor (K ) interactions on the two-
dimensional Kagomé lattice. This is quite a well-suited test model, since it exhibits
a rich phase diagram (with 4 different ordered phases, some of which are frustrated,
and reentrance phenomena), and it has been solved exactly.(32) Moreover, the model
has also been investigated by a cactus approximation, showing good qualitative
agreement with the exact results.(9) The cactus lattice structure of Ref. 9 is reported
in Fig. 3(a), where the main clusters have 5 sites, 4 of which (those on the vertices
of each square) are joint sites. Interactions on horizontal bonds are equal to
those between a joint site and a central site, and correspond to nearest-neighbor
interactions (J ) for the original Kagomé lattice. Interactions on vertical bonds are
(in principle) different, and correspond to next-nearest neighbor interactions (K )
on the Kagomé lattice. The main-cluster hamiltonian reads

h(s0, s1, s2, s3, s4) = −J [s1s2 + s3s4 + s0(s1 + s2 + s3 + s4)]

−K (s2s3 + s4s1), (37)

where s0 = ±1 denotes the spin of a central site and s1, s2, s3, s4 = ±1 denote
the spins of joint sites. Let us note that here, in order reduce the problem to
the previously described framework, we have actually to work on an effective
4-site hamiltonian h̃(s1, s2, s3, s4), obtained by summing over the central spin
configurations, i.e.,

e−βh̃(s1,s2,s3,s4) ≡
∑

s0=±1

e−βh(s0,s1,s2,s3,s4). (38)

As in the previous case, we can then compute a 4 × 4 hessian matrix, whose
eigenvectors turn out to be

v1 = (+1,−1,−1,+1)

v2 = (+1,−1,+1,−1) (39)

v3 = (+1,+1,−1,−1)

v4 = (+1,+1,+1,+1).
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Fig. 3. (a) Sketch of the cactus lattice employed for the approximation of the Kagomé lattice model:
single segments denote J (nearest-neighbor) interactions, double segments K (next-nearest-neighbor)
interactions; 0 denote central sites, 1, 2, 3, 4 joint sites with (in principle) different magnetizations
m1, m2, m3, m4. (b) Different types of ordering displayed by the model: + and − denote the sign of
site magnetizations, ± denotes equally probable spin values (m0 = 0).
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They define the four different ordered phases depicted in Fig. 3(b). In phases 1 to
3, spins + and − in the central site are equally probable, as observed in Ref. 9,
although this fact is not evident by the present treatment. The corresponding
eigenvalues are

λ1 = − cosh(2β J ) − e−2βK cosh(2β J ) − 1

4
e2βK (e6β J − e−2β J )

λ2 = − cosh(2β J ) − e−2βK sinh(2β J ) − 1

4
e2βK (e6β J + 3e−2β J ) (40)

λ3 = − cosh(2β J ) + e−2βK sinh(2β J ) − 1

4
e2βK (e6β J + 3e−2β J )

λ4 = − cosh(2β J ) − e−2βK cosh(2β J ) + 1

4
e2βK (e6β J − e−2β J ).
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Fig. 4. Phase diagram of the Ising model with nearest- and next-nearest-neighbor interactions on the
Kagomé lattice (thin lines), compared to the results from the cactus approximation (thick lines). All
transitions are second order (critical). Numerals denote the ordered phases corresponding to those
shown in Fig. 3(b). The central region is the paramagnetic phase.
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Setting each eigenvalue at zero yields the critical lines, which we report in Fig. 4.
These lines have been already computed numerically in Ref. 9, whereas the present
method allows one to derive closed-form equations for them. As shown in Fig. 4,
they provide quite a good approximation of the exact critical lines.(32)

4. SUMMARY

In this paper, I have proposed an alternative variational formulation of the
Bethe and cactus approximations. This approach is based on a variational free
energy, which is defined in the subspace of single-site probability distributions, but
is equivalent to the Bethe free energy in the sense that it yields the same marginals
as stationary points. This approach may be useful to deal analytically with the
cactus approximation of different model systems. Analytical treatments become
useful to investigate certain loci of a phase diagram, such as spinodals or critical
points, where some response functions diverge, so that numerical calculations
become difficult. I had previously employed this approach to investigate spinodals
in the phase diagram of a lattice model of water, without giving details about the
proof of equivalence. Here, I have presented such a proof in full detail and I have
also described an application of the method, to determine closed-form criticality
conditions, for spin models with inversion symmetry. Moreover, I have observed
that a good criterion for the connectivity constant of the cactus lattice, used to
build up the approximation scheme, may be to choose the lowest possible one.
This fact could be expected since, conversely, large connectivities tend to make
the approximation similar to an ordinary mean-field theory.
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